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LETTER TO THE EDITOR 

Replica-symmetric theory of the nonlinear analogue 
neural networks 
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t Department of Applied Physics, Tokyo Institute of Technology, Ohokayama, Meguro-ku, 
Tokyo, Japan 
$ Department of Management and Information Science, Gumma Women’s College, Naka- 
Oorui-cho 501, Takasaki, Japan 

Received 1 June 1990 

Abstract. On the basis of the theory of the naive mean field model of spin glasses, analogue 
neural networks of the Hopfield type are investigated in the saturation limit. The saddle- 
point equations for the order parameters describing retrieval and spin glass phases of the 
networks are obtained by means of a statistical mechanical analysis within the framework 
of the replica-symmetric theory and are shown to undergo a modification to that of AGS 

theory, due to the absence of the Onsager reaction term in the TAP equation. Based on  the 
equations, the memory storage capacity of the networks is analysed as a function of the 
analogue gain p. A small increase in the critical storage capacity is found for finite values 
of 0, compared with that of the Ising model networks with corresponding inverse tem- 
perature, although the qualitative nature of the phase diagram is unchanged. 

Since Hopfield’s work (Hopfield 1982,1984, Hopfield and Tank 1985) on the modelling 
of neural networks for associative memory based on nonlinear analogue neurons, 
physical models of neural networks have been extensively investigated (Amit 1989, 
Geszti 1990). In particular, the performance of neural networks of discrete-valued 
formal neurons with symmetric synaptic couplings has been extensively explored on 
the basis of statistical mechanical theory of spin glasses (Hemmen and Morgenstern 
1987, Mezard et a1 1987, Amit et a1 1985a, b, 1987). Although Hopfield suggested that 
the performance of analogue networks is better than that of the Ising model networks, 
there has been little theoretical exploration on the properties of analogue networks to 
determine the extent to which the use of analogue networks has advantage over the 
Ising versions or how their memory capacity and the number of spurious states compare 
with their counterparts. 

We have been concerned with studying such characteristic properties of nonlinear 
analogue neural networks from the viewpoint of the comparison of the network 
performance with discrete-valued neural networks such as the Ising model networks. 
In our previous paper (Fukai and Shiino 1990) which dealt mainly with the problem 
of counting the number of equilibrium (metastable) states of analogue neural networks 
of the Hopfield type, we reported that the number of the spurious states with no 
macroscopic correlation with the embedded patterns is remarkably suppressed, ensur- 
ing an excellent and promising performance as associative memory of the analogue 
neural networks. We also estimated the critical storage capacity and compared it with 
the result obtained from a statistical mechanical approach, which was only briefly 
noted in the previous paper. The aim of the present letter is then to elaborate the 
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statistical mechanical analysis based on the replica-symmetric theory of obtaining the 
storage capacity of the analogue neural networks and to show that it is a little larger 
than the critical capacity of the stochastic Ising model neural networks of Amit, 
Gutfreund and Sompolinsky (hereafter referred to as AGS). The analysis is made with 
full use of the concept of the native mean-field model in the spin-glass theory. 

The nonlinear analogue neural network model we consider is the set of equations 
describing the time change of membrane potentials ui (Hopfield 1984) 

c- du. = JUV( Uj) -'+I, U. i =  1 , .  . . , N 
d t  j R 

which represent the conservation law of the currents flowing through the membranes 
with Ii and V ( u )  being a current from the external to the network and input-output 
relation of each neuron respectively. The capacitance C and resistance R can each be 
set to unity for simplicity without loss of generality. The synaptic couplings JU ( i  Zj) 
with p (  = a N )  sets of random embedded patterns are assumed to be 

with &" taking on *l. 
It is well known (Hopfield 1984) that the dynamics of (1) with symmetric Jll is 

characterized by downhill motion on the surface of a Lyapunov function and ends up 
with one of the fixed-point attractors determined by 

U, = c J J  V(UJ) + I,. (3) 
J 

Equations of this kind with appropriate V will be associated with the TAP equation 
corresponding to the naive mean-field model in the spin-glass theory. The naive 
mean-field model of a spin system with interactions JIJ reads (Bray et a1 1986) 

which is the so-called TAP equation (Thouless et a1 1977) without the Onsager reaction 
term (Mexard et a1 1987). Defining the effective local field h!loc) acting on site i as 

1 JUmj + hiex) ( 5 )  h j l 0 C )  = 

hiioc) = Jij tanh(ph~.'"")) + hiex) ( 6 )  

j 

(4) is rewritten as 

j 

which will be equivalent to (3)  if one sets ui = hitoc), Ii = hi'"', V ( x )  = tanh(px). 
In writing (1) or (3), one may, however, require the V ( u )  to represent a positive- 

valued monotonically increasing function of U so that the input-output relation V( U )  
describes the dependence of the average rate of firing on the membrane potential U. 
In such a case, when one chooses for example V (  U )  to be ;( 1 -+ tanh(pu)), (3) becomes 

We then see that the above equation virtually reduces to ( 6 )  under the condition that 
an external input current be Ii = -$(ej Ji j ) .  From the above discussion, it turns out 
that one will be allowed to deal with (4) instead of (3) for the purpose of exploring 
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the network behaviour of the analogue neurons with symmetric connections. In what 
follows, assuming V(x) = tanh(px) we will be concerned with (4) or (6). We then refer 
to the p as the analogue gain. 

It was shown by Bray et a1 that the TAP equation for the naive mean-field model 
(4) has its basis on a specific spin system in which each site i consists of a set of M 
Ising spins Si, ( a  = 1,. . . , M ) ,  each of which interacts with each of the M spins at 
other sites. To be specific, writing the Hamiltonian (Bray et a1 1986) for such a 
system as 

M M 1 x = -- Jli siasj, - c h i e x )  c si, 
2M i j  a , b = l  I a = l  

evaluation of the partition function Tr{s,a)i=l,...,N e-pH with the use of new variables 
mi = ( 1 / M )  za5,  Si, was shown to yield, in the limit M + w ,  the naive mean-field 
equation (4) with inverse temperature p. Consequently, a thermodynamical analysis 
of (4) should be equivalent to the statistical mechanical analysis of the Hamiltonian 
(8) for the specific spin system. Following the standard method developed by AGS for 
an analysis of the stochastic Ising model networks, we calculate the averaged free 
energy of the Hamiltonian (8) with Jij given by (2) to obtain the ergodic components 
of the thermodynamical system, from which memory storage capacity of the analogue 
networks will be derived. 

With the external fields hiex)  in (8) being hjex)  =e:=, h‘”’, the averaged free energy 
per spin of the system (8) can be calculated using the replica method (Amit et a1 1987): 

M 

where the quenched average ((2“)) over the 6: is given by 

in which the {S$,P)}(p = 1, . . . , n )  are replica spin variables. We will perform the average 
over 5’s in two steps; first over the p - s non-condensed patterns {#“} with p > s and 
later over the s condensed patterns {&’} with p < s (s  will be kept fixed as p ,  N + CO). 

The part associated with the averaging over the p - s patterns in (10) results in 
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The leading terms in (11) as N-+W are given by the Gaussian integral, which is 
obtained from the rescaling Gr = e g r :  

where 

where ((. . .)) in the RHS refers to the average over the condensed patterns. In the 
thermodynamic limit N -+ CO, the integrals over the auxiliary variables g;, q,,,, r,,, qw 
and r,,, can be evaluated by the saddle-point method, from which the physical meaning 
of those variables is determined. The g,” and qp,, for example, represent the overlaps 
with the p t h  ( p  s s) embedded pattern 

and the Edwards-Anderson order parameter (Edwards and Anderson 1975) 
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respectively, and so on. Then, in the context of the replica symmetric theory, setting 
gr = g”, qpv = q, r,, = r, q, = 4, and r, = P yields 

a 
( g p ) 2  -5 Tr ln{-pMQ(q) + 1- p M f i ( 4 ) )  

2 p = l  

Introducing another set of auxiliary variables z, yp(p = 1, . . . , n), we can calculate the 
Tr exp{. . .} part in the exponent of the ((Z”)), 

Tr exp{. . .} 

Making the ansatz (Bray et al 1986) 

and noting 

Tr ln{-PM& q )  + f - pMB( 4 ) )  
= In{ 1 - pMq - ( n  - l)pMq} + ( n  - 1) In{ 1 - pMcj + pMq} 

we can rewrite the ((2“)) in (15) as, M + a3 and n + 0, 

M n { - ~ y 2 + l n [ 2 c o s h { p 6 r r  

” + J - a p + a p % y + p  ( g ” + h ” ) [ ( ” )  
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where y is chosen to satisfy 

which results from the saddle-point evaluation of the integrals over yp in (16) in the 
limit M + 43 within the replica symmetric theory. 

It is now straightforward to obtain the free energy (9) from (19): 

2 1 - p u  2 ( ru+qv)+  [ &dz e-z212(( -: y 2  

S 

+In 2cosh p & G z + J - a p + a p 2 v y + p  1 ( g p + h p ) 6 ( ” )  [ I  p=1 

Defining Y = y /J -ap  + ap2v, (20) is rewritten as 

Y=tanh p 6 z + ( a p 2 v - c y p ) Y + p  C ( g ” + h ” ) f ‘ ” ’ ’  . (22) { F 1 
Local minima o f f  in (21) with respect to variations in g”,  r, U, U, and q represent the 
ergodic components of the thermodynamic system with naive mean-field Hamiltonian 
(8), each of which is separated by barriers of O ( N ) .  It follows that 

1 
- 0  : pv=- (23 1 af 

a4 1 - @ U ‘  
-- 

As in the AGS theory, retrieval states are described by g” = gSWY. In that case, rescaling 
the variables as 6‘’) Y + Y and [‘”z + z and setting h = 0 in (23) yields 

a p 2 U  Y=tanh p 6 z + -  

g = [  ~ d z e - z 2 1 2 Y  

{ 1 - p u  

q = [ & dz e-z2i2 Y2 

&G pu = I & dz e-L2/2zY 

with r = q / (  1 - pu)’. 
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Equations (24a-d) constitute a basic set of equations for the description of the 
analogue neural network which should be contrasted with the result of AGS. Unlike 
their case, the Y to be averaged over the Gaussian noise is given only implicitly by 
(24a). The difference has to be attributed to the very nature of the naive mean-field 
model in which the Onsager reaction term is absent in the TAP equation (4). We note 
that equation for Y(z) (24a) admits, in general, multisolutions. In that case, the 
solution should be chosen which maximizes the exponent of the integrant in (16): a 
kind of Maxwell's rule tells us that the available solution Y(2) as a function of z 
undergoes a discontinuous jump at z = - g / G  from - Y* to Y* with Y* determined 
by Y,=tanh(ap2u/(l  -pu))Y*]. 

Taking the limit p +CO considerably simplifies the analysis of (24). One can then 
easily check that the same result as obtained by AGS follows, which is consistent with 
the observation that the problem of the presence or absence of the Onsager reaction 
term in the TAP equation does not matter at zero temperature in the spin-glass theory 
(Bray et a1 1986). 

For finite values of p, on the other hand, a certain discrepancy from the AGS theory 
will be found. To see this, we first investigate the phase transition of second order 
from the disordered, paramagnetic phase ( g  = q = 0) to the spin-glass phase (g = 0, 

Assuming g = 0 and q to be infinitesimally small, we expand (24a) to obtain in the 
4 # 0). 

leading order of q 

Z 
p G  

1-ap2U/(1-pU) 
Y =  

Substituting into (24c) and using I = q/(1 - - P U ) ~ ,  we have 

2 4 + O h 2 )  (1 - a p 2 u / (  1 - @U))'( 1 - p u )  4 =  

from which the condition determining the phase transition point is given by 

ab2 
(1 - apZu/(  1 - PU))*( 1 - pu)2 = 

Another complementary condition will be obtained from (25) and (24d) as 

1 
U =  

1 - ap 'U/ ( 1 - p u )  ' 

Both (27) and (28) yield the phase transition point pG 

which differs from that of AGS theory, as is expected. 
Retrieval and spin-glass phases are studied by numerically solving (24), with the 

result that the phase diagram of the analogue network is qualitatively the same as that 
of the stochastic Ising model network of AGS. As in the AGS theory, critical storage 
capacity a, is determined from the condition of a sudden disappearance of retrieval 
phase (g # 0) coexisting with the spin-glass phase ( g  = 0, q Z 0) as a is changed with 
p kept fixed. The a ,  against p-' curve thus obtained numerically is shown in figure 
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Figure 1. Phase diagram for the analogue neural network with V(x) = tanh(px). Plots of 
critical storage capacity a, against the inverse of the analogue gain P are displayed together 
with the phase transition points pG of second order between paramagnetic and spin-glass 
phases. Both of the phase boundaries are based on the saddle-point equations (24). The 
a, against p-' curve as well as a against PE' for the stochastic Ising model network (AGS) 
are also shown for comparison (broken line). The difference in the a, as well as in the PG 
is attributed to the fact that the analogue network (naive mean-field model) differs from 
the stochastic k ing  network of AGS by the absence of the Onsager reaction term in the 
TAP equation. 

1, where the corresponding curve in AGS theory is also presented for comparison. Apart 
from the two limiting case p = CO ( a ,  = 0.138) and p = 1 (ac=  0), for which no discrep- 
ancy in a ,  is found at all between the analogue and (stochastic) Ising model networks, 
the critical storage capacity of the present analogue network is observed to be a little 
larger than that of the stochastic Ising model network with corresponding inverse 
temperature, although any qualitative difference cannot be found. 

As was discussed in our previous paper (Fukai and Shiino 1990), the present result 
is consistent with the result of another kind of analysis concerning the counting of the 
number of equilibrium states in the present analogue networks: The aC-p- l  curve 
obtained from a bifurcation analysis based on the thermodynamic calculation of the 
naive mean-field free energy is in perfect agreement with that inferred from the 
evaluation of the critical number density of the equilibrium states of the dynamical 
equation of the analogue network. 

Finally we will comment on the result reported quite recently on a similar analogue 
neural network by Marcus et a1 (1990). They obtained the same set of equations as in 
the AGS theory for the calculation of the critical storage capacity, with the result giving 
forth a contradiction to the present result (24) of our analysis. To be more specific, 
their set of equations will be inconsistent with their result for the linear stability analysis 
of the phase transition between the paramagnetic and spin-glass phases, which is in 
agreement with the result of our analysis. Their analysis was based on the signal to 
noise analysis (Geszti 1990), which may be inappropriate in a rigorous treatment of 
the noise part originating from the non-condensed patterns. 



Letter to the Editor L1017 

In summary, conducting the statistical mechanical analysis of the naive mean field 
model equivalent to the nonlinear analogue network, we have obtained, within the 
framework of the replica symmetric theory, a set of equations describing local minima 
of the averaged free energy, which has been found to differ from that for the stochastic 
Ising network due to the absence of the Onsager reaction term in the TAP equation. 
Based on the equations, critical storage capacity has been calculated numerically as a 
function of the analogue gain p. Although overall behaviour of the a ,  - p-' curve is 
qualitatively the same as the corresponding stochastic Ising networks, a small increase 
in a,  has been found compared with the counterpart of the stochastic Ising network. 
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